Master of Science degree in Environmental Systems —
with options in Energy Technology & Policy; Environmental Resources Engineering; and Geology

This program is administered by the coordinator of the environmental systems graduate program of the College of Natural Resources and Sciences.

Coordinator
Rick Zechman, Ph.D.

Graduate Office
College of Natural Resources & Sciences
Forestry 101
707-826-3256

The Program
Students completing this program will have demonstrated:
- the ability to read the current literature in their area with understanding and insight
- the ability to apply that current research to the solution of environmental and resource management problems in their area of interest
- the ability to successfully work as a team member on the solution of environmental and resource management problems
- the ability to clearly articulate an understanding of and solutions to environmental and resource management problems
- the ability to define and conceptualize an environmental problem, develop an appropriate approach to its solution, successfully complete the project, and clearly communicate the results.

The Energy Technology and Policy Option is an interdisciplinary program for students interested in issues ranging from renewable energy engineering to climate change mitigation, and from international development to energy policy in California. The program offers a rigorous curriculum for students who are interested in making a difference in these important areas of work.

Career possibilities: energy engineer, energy policy analyst, environmental projects manager, international development worker.

The Environmental Resources Engineering Option focuses on the design, testing, and analysis of natural and engineered systems applied to advanced water and wastewater treatment, water resources, and renewable energy. Career possibilities: environmental engineer, water quality engineer, energy engineer, water resources engineer.

The Geology Option, during its first year, gives a quantitative and qualitative background for research in applied geology. Students usually spend their summers on thesis research. The second year is devoted to research, data analysis, and writing the thesis.

Career possibilities: field geologist, engineering geologist, exploration geophysicist, hydrologist, and marine geologist.

Preparation
Earn an approved bachelor's degree for the selected option.
Satisfy general admission requirements.
Earn satisfactory test scores from the verbal and quantitative sections of the Graduate Record Examination.
File a statement of objectives with reasons for pursuing a master's degree with a particular option.

Requirements for the Degree
Complete an environmental systems program of courses arranged with a graduate advisor and approved by the faculty graduate committee. The program must include the core courses below plus an environmental systems option. Background deficiencies may be satisfied by taking approved undergraduate courses.

Complete the core course requirement:

ENGR 532 [4] Energy, the Environment, and Society
STAT 630 [4] Data Collection & Analysis

And at least one additional course from the following:

ENGR 533 [4] Energy & Climate Change

Approved upper division and graduate courses in a coherent package of a minimum of four elective courses that bring the total to at least 30 units.

Environmental Resources Engineering Option

Prerequisites. Applicants should have an undergraduate major in engineering (civil, mechanical, agricultural, chemical, industrial, environmental, or other) or a related physical science. Students with deficiencies in core competencies associated with Environmental Resources Engineering may be required to take prerequisite coursework.

Required courses. All core requirements listed under Requirements for the Degree plus the following option requirements:

ENGR 532 [4] Energy, the Environment, and Society
STAT 630 [4] Data Collection & Analysis

Required courses. All core requirements listed under Requirements for the Degree, plus at least three graduate level engineering courses from an approved list. In addition, students must complete approved coursework in topics related to engineering, associated sciences, economics, and policy to bring the total number of units to at least 30. Up to 6 units of thesis or project work may be applied to the degree. Note that courses taken at the 400-level for an undergraduate degree may not be repeated at the 500-level for credit towards the graduate degree.

Approved coursework must include one course each in economics and policy. Allowable courses include those listed below or appropriate alternative non-general education upper division or graduate level courses approved by the student's academic advisor.
Approved economics courses:
ECON 423* (3) Environmental & Natural Resources Economics
ECON 423D (1) Env. & NR Economics - Additional Depth
ECON 550 (4) Economics of Energy & Climate Policy
ECON 570 (4) Sustainable Rural Economic Development
*Must be taken concurrently with the corresponding Additional Depth course

Approved policy courses:
ENGR 532 (4) Energy, Environment & Society
ENGR 545 (3) Water Resources Planning & Mgmt.
GEOG 473 (1-4) Topics in Advanced Physical Geography

Geology Option
Prerequisites. Applicants should [a] have an undergraduate major in geology or a related science and [b] submit transcripts and Graduate Record Examination scores in both aptitude and geology. Applicants must have at least a year of college physics and a minimum of two semesters of calculus (three semesters desirable).

Required courses. All core requirements above plus option requirements:
GEOL 550 (3) Fluvial Processes
GEOL 551 (3) Hillslope Processes
GEOL 553 (4) Quaternary Stratigraphy
GEOL 554 (2) Advanced Geology Field Methods
GEOL 555 (3) Neotectonics
STAT 630 (4) Data Collection & Analysis

Approved upper division and graduate courses in a coherent package to bring the total units to 30. Electives generally will be taken within the College of Natural Resources and Sciences.